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It is shown that additional Bragg re¯ections can appear exclusively owing to the

local chirality associated with the left±right asymmetric environment of

scattering atoms in non-magnetic crystals. The structure amplitude of these

re¯ections depends on the antisymmetric part of a third-rank tensor describing

the spatial dispersion effects. It enhances for resonant near-edge scattering

through a mixed multipole transition, which includes a dipole±quadrupole

contribution. It is shown that this mechanism works even for centrosymmetric

crystals, and some realistic examples are considered in detail (�-Fe2O3, LiNbO3

etc.). For instance, the interference between the dipole±quadrupole and

quadrupole±quadrupole terms may be responsible for the threefold symmetry

of the azimuthal dependence of the hhh, h = 2n + 1, re¯ections observed recently

in hematite.

1. Introduction

The effects of X-ray gyrotropy and circular dichroism have

been of growing interest in recent years (we will use for

phenomena of this type the general term chirality). The third

generation of synchrotrons allows the measurement of these

effects near the absorption edges of different elements and the

study of the element-speci®c chirality. X-ray natural optical

activity and circular dichroism have been tentatively investi-

gated for many years by several authors (Siddons et al., 1990;

Hart, 1994) but the corresponding effects have been unam-

biguously established only quite recently (Alagna et al., 1998;

Goulon et al., 1998, 2000). They provide non-trivial informa-

tion on the fundamental properties of crystals, for example on

the even±odd parity of the excited-state wave function.

Chirality can be considered as a particular case of envir-

onment-induced anisotropy of the X-ray atomic susceptibility

in crystals. It is reasonable to distinguish the global anisotropy/

chirality of a crystal, studied by conventional optics, and the

local atomic anisotropy/chirality accessible only via X-ray

diffraction. The former and latter are restricted correspond-

ingly by the point and space symmetry groups of the crystal.

For example, atomic environments can be locally anisotropic

even in cubic crystals and locally chiral even in centrosym-

metric structures. According to the optical classi®cation, the

chiral effects are associated with the antisymmetric part of a

third-rank tensor, and its real and imaginary parts correspond

to rotatory power and circular dichroism. In optics, this tensor

may differ from zero in non-centrosymmetric crystal classes

exclusively. For the Bragg scattering, however, in contrast with

optics, not only the chiral properties of scatterers themselves

are essential but also the ordering of the scatterers in a unit

cell. If atoms are not in inversion centres, their scattering

amplitudes can include third-rank antisymmetric tensors, and

we will show that their special ordering can cause additional

re¯ections (chirality-induced re¯ections).

There is quite a close similarity between this effect and the

anisotropy-induced re¯ections which were predicted by

Templeton & Templeton (1980), theoretically developed by

Dmitrienko (1983, 1984), and experimentally observed for the

®rst time by Templeton & Templeton (1985) for the dipole±

dipole transition in NaBrO3. They are usually called

`forbidden re¯ections' or ATS (anisotropy of the tensor of the

susceptibility) re¯ections, because in the absence of the

anisotropy they are strictly forbidden by the glide-plane and/

or screw-axis selection rules. The anisotropy of the X-ray

susceptibility has signi®cant value only in resonant conditions

near absorption edges of atoms, where excited electronic

states are strongly in¯uenced by the anisotropic local en-

vironment. In the dipole approximation, it is described by the

symmetric traceless part of a second-rank tensor. Therefore

these `forbidden' re¯ections can be observed near the

absorption edges of atoms if there are glide planes or screw

axes in the symmetry group of the crystal. Up to now they

have been found for many crystals, among them NaBrO3

(Templeton & Templeton, 1985), CuO2, LiHSeO3 (Kirfel,

1994), FeS2 (Nagano et al., 1996). The electric dipole±dipole

contribution was usually dominant.

In some cases, however, the ATS re¯ections are absent for

dipole transitions. For example, they are absent if the scat-

tering vector is directed along the threefold, fourfold or sixfold

rotation axis (not to be confused with screw axes). Then, ATS



re¯ections are also absent when resonant atoms are in special

positions with high point symmetry (for instance cubic) and

for which the dipole anisotropy vanishes. If the re¯ections are

nevertheless observed, the high-rank dipole±quadrupole

(Templeton & Templeton, 1994) and quadrupole±quadrupole

(Finkelstein et al., 1992) terms are supposed to be relevant. In

optics, similar terms are associated with the ®rst- and second-

order spatial dispersion correspondingly. The gyrotropic chiral

contribution, which is also the ®rst-order spatial dispersion

effect, is responsible for the natural circular dichroism in

X-ray optics, but it was never observed for X-ray diffraction.

This contribution was included in the general formulae

(Hannon et al., 1988; Blume, 1994; Templeton, 1998) as the

antisymmetric part of the third-rank tensor describing the

dipole±quadrupole transitions, but no speci®c diffraction

effects for its observation were suggested.

There is an important difference between symmetric and

antisymmetric high-rank contributions to the structure factor

of `forbidden' re¯ections. It was found recently that the

re¯ections caused by the symmetric part of the high-rank

tensors might also appear for dipole±dipole transitions owing

to thermal atomic motion or point defects (Dmitrienko et al.,

1999; Dmitrienko & Ovchinnikova, 2000). In particular, the

forbidden re¯ections in Ge, originally attributed to the third-

rank symmetric contribution (Templeton & Templeton, 1994),

are caused mainly by the thermal motion effect (Kokubun et

al., 2001). The antisymmetric part cannot be imitated this way.

In the present paper, we show how the local chirality can

lead to the appearance of the re¯ections, which are forbidden

in the absence of chirality. From the mathematical point of

view, those additional re¯ections appear owing to the anti-

symmetric part of the third-rank tensor corresponding to the

chirality of resonant atom positions. Hence, in this case one

can be sure that the effect is induced by the ®rst-order spatial

dispersion of the susceptibility. We also discuss several crystal

structures where this term is accompanied by the symmetric

third-rank and fourth-rank tensors.

2. Tensor atomic factor and tensor structure factor

To consider the spatial dispersion effects in resonant X-ray

scattering, we will use the most general form of the tensoral

atomic factor fjm allowed by symmetry (Blume, 1994). In this

paper, we take into account only time-reversal terms

neglecting spin and orbital ordering. The considered expan-

sion differs from the mulitpole expansion in spherical

harmonics, but the tensors appearing are usually classi®ed in a

similar way, that is, as dipole±dipole, dd, dipole±quadrupole,

dq, quadrupole±quadrupole, qq, and so on,

fjm � f dd
jm � if

dqs
jmn�k0n ÿ kn� � if

dqa
jmn �k0n � kn� � f

qq
jnmpk0nkp � . . . :

�1�

The dipole±dipole and quadrupole±quadrupole terms are

symmetrical over the index permutation, whereas for the

dipole±quadrupole contribution there are two terms, symme-

trical and antisymmetrical,

f dd
jm � f dd

mj ;

f
dqs
jmn � f

dqs
mjn;

f
dqa
jmn � ÿf

dqa
mjn ;

f
qq
jnmp � f

qq
njmp � f

qq
jnpm � f

qq
mpjn:

�2�

In general, all these terms are complex and include resonant

denominators. Note that the symmetrical third-rank tensor is

absent in optics because k0 = k. This term was discussed in

detail by Templeton & Templeton (1994). In addition to this

permutation symmetry, each tensor should be symmetric over

the point group of the corresponding atomic position. This

produces strong restrictions on the number of independent

non-zero components. All these restrictions can be found in

the crystallography textbooks (Sirotin & Shaskolskaya, 1975;

Nye, 1985). Each of these independent components may be

resonant and for the most general description they should be

considered as independent complex parameters. For all the

atoms occupying the same orbit of equivalent positions,

however, the set of those complex parameters is the same

(because the atoms' environment is the same); only orienta-

tions or signs (in the case of inversion) of the corresponding

tensors may be different.

In particular, the antisymmetric third-rank tensor differs

from zero only for the point groups without an inversion

centre. This means that all considered effects are possible only

in the case of non-reversal time-invariant transitions. This was

studied in detail in connection with the chiral effects in X-ray

resonant optics (Goulon et al., 1998; Natoli et al., 1998) similar

to conventional optics (Chiu, 1970; Buckingham & Dunn,

1971; Barron, 1971).

To ®nd the possible re¯ections in the diffraction pattern,

one should ®nd the tensor structure amplitudes Fjm�H� for

re¯ection vectors H,

Fjm�H� �
P

s

f s
jm exp�2�i Hr s�; �3�

where r s is the position of the sth atom in the unit cell and f s
jm is

given by (1).

If the atomic factor is scalar (as it is usually supposed) then

the structure factor (3) must be zero for some re¯ections

related by screw axes and/or glide planes [so-called general

re¯ection conditions in International Tables for Crystal-

lography (1996)]. Because tensors are changed under the

rotation and mirror operations, they can violate those general

conditions and produce `forbidden' re¯ections. In order to

illustrate this point, we calculate in xx3 and 4 the tensor

structure factors of `forbidden' re¯ections for cases of

increasing complexity. We will select space groups for which a

number of ATS re¯ections are forbidden in the dipole±dipole

(or even in quadrupole±quadrupole) approximation but

become allowed owing to the antisymmetric and symmetric

parts of the tensor f
dq
jmn.
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3. A simple example: cubic symmetry of resonant atom
positions

Let us start with a simple illustrative example when the

symmetry of resonant atom positions is so high, 432, that it

does not allow any anisotropy of scattering in the dipole±

dipole approximation. This cubic symmetry also forbids the

symmetric third-rank tensor, but allows the antisymmetric

third-rank tensor f
dqa
jmn and the fourth-rank tensor f

qq
jnmp. Such a

situation exists in the Pn�3n space group with the resonant

atoms in the 2(a) position with 432 symmetry and coordinates

(i) 0; 0; 0 and (ii) 1
2 ;

1
2 ;

1
2.

For isotropic susceptibility, the Bragg re¯ections 0kl, k� l =

2n� 1, and hhl, l = 2n� 1, are forbidden according to the

general re¯ection conditions (International Tables for Crys-

tallography, 1996). For the forbidden re¯ections, atom (i) and

atom (ii) scatter X-rays in antiphase so that the tensor struc-

ture factor is given by Fjm�H� � f
�1�
jm ÿ f

�2�
jm . Because the posi-

tions (i) and (ii) are related by inversion, the fourth-rank

tensors are the same for the two atoms and their contributions

vanish. On the contrary, the third-rank tensors have opposite

signs and their contributions give the following structure

amplitude:

Fjm�H� � 2ig"jmn�k0n � kn�; �4�
where it is taken into account that for the 432 symmetry the

antisymmetric third-rank tensor should be proportional to the

tensor "jmn antisymmetric over all indices ("xyz = 1); g is a

complex coef®cient which includes a resonant denominator.

Multiplying the structure amplitude by polarization vectors

of incident and diffracted waves, e and e0, we have

e0F̂�H�e � 2ig�k0 � k��e0 � e�: �5�
Here, and hereafter, a circum¯ex ( ^) above a letter signi®es a

tensor and the sign � signi®es the vector product. For the

conventional r and p polarization vectors it is easy to see that

rF̂r = p0F̂p = 0 and rF̂p = ÿp0F̂r = 2ig�1� cos 2�B�. There-

fore, the initial p polarization transforms into r polarization of

the diffracted wave and vice versa for all forbidden re¯ections.

It is unusual that the structure amplitudes r) p and p) r
have opposite signs. Furthermore, we shall see that this sign

difference can lead to interesting effects in less symmetrical

situations.

Note that for this case the scattering amplitude is spheri-

cally symmetrical, without any anisotropy, and depends only

on the scattering angle 2�B. Nevertheless, we have non-zero

`forbidden' re¯ections (in this case ATS should be read as

antisymmetric tensor of susceptibility). The only bad point

with this example is that there are no good crystals with Pn�3n

symmetry. The same situation exists, however, in the Fm�3c

structures for resonant atoms in the 8�a� position. There are

many crystals of the cF112 Pearson type with this structure but

their large unit cell makes the observation of forbidden

re¯ections very dif®cult because of the multiple-wave re¯ec-

tions. Similar examples may be found in the P�43n structures

where resonant atoms can be at the 2�a� positions with 23

point symmetry. There are also many suitable less-symmetrical

crystals with few atoms per unit cell (for some of them the

space group is a subgroup of Pn�3n) and now we will consider

these more realistic structures.

4. Resonant atoms in special positions with non-cubic
symmetry

We will again concentrate on those cases where the ATS

re¯ections vanish for the dipole±dipole transition. In the

previous section, we considered an example of a crystal

without any anisotropy in the dipole±dipole approximation. In

some cases, however, the dipole±dipole contribution to ATS

re¯ections is absent in spite of the local anisotropy of atomic

positions. For example, the dipole±dipole transitions give no

contribution to ATS re¯ections from the crystal planes normal

to threefold, fourfold and sixfold axes. Therefore, it is inter-

esting to study the cases of rhombohedral, tetragonal and

hexagonal crystals.

4.1. Rhombohedral crystals with R�3c and R3c symmetries

Let us consider ®rst the hematite crystal, �-Fe2O3, where

quadrupole±quadrupole terms were supposed to be respon-

sible for the hhh, h = 2n� 1, re¯ections observed near the iron

K edge (Finkelstein et al., 1992; Watanabe et al., 2000). We will

neglect the magnetic ordering and, strictly speaking, our

results will be valid for the paramagnetic phase of �-Fe2O3 or

other crystals with the same structure, like V2O3. Here we will

consider more carefully the nature of these re¯ections.

The space group of hematite is rhombohedral, R�3c, with

four Fe atoms per unit cell in the 4c sites at the threefold axes

(Fig. 1). The coordinates of Fe atoms will be enumerated in the

order of their positions at the threefold axis: (i) �x�x�x, (ii) xxx,

(iii) �x� 1
2 ; �x� 1

2 ; �x� 1
2, (iv) x� 1

2 ; x� 1
2 ; x� 1

2, where x =

0.105. The point symmetry is 3 and the atom environment is

Figure 1
The `right-handed' and `left-handed' positions of Fe atoms in a unit cell of
hematite.



chiral: if we assume that atom (i) is left-handed then atom (iv),

related to atom (i) by twofold rotation, is also left-handed,

whereas atoms (ii) and (iii), related to atoms (i) and (iv) by

inversion, should be right-handed (hence, inside a unit cell the

sequence of atoms along the threefold axis is RRLL, Fig. 1).

If any anisotropy is neglected, then the glide-plane-

forbidden re¯ections are hhl, l = 2n� 1, and hhh, h = 2n� 1,

because for these re¯ections atoms (i) and (iii) scatter in

antiphase as well as atoms (ii) and (iv). For any tensor part of

the susceptibility, it is obvious that only those components of

the tensors that change sign under the glide-plane operation

can contribute to the forbidden re¯ections. This is a necessary

condition but not suf®cient; the contribution can vanish

because of the special orientation of the polarization and wave

vectors.

In the case of the dipole±dipole resonant transition, the

second-rank susceptibility tensors of Fe atoms are uniaxial and

oriented along threefold axes. Therefore, the second-rank

tensors are the same for all the atoms and the forbidden

re¯ections remain forbidden in this approximation.

Contrary to the second-rank tensors, the third-rank tensors

are different for different Fe atoms but related by corre-

sponding symmetry operations. For atoms related by inver-

sion, (i) and (ii) or (iii) and (iv), the third-rank tensors have

opposite sign. We will write all tensor components in crystal-

lophysical Cartesian coordinates with the z axis along the 3

symmetry axis of the rhombohedron and the x axis normal to

the glide plane. For re¯ections, however, we will use notations

in rhombohedral coordinates. In the Cartesian coordinates,

the symmetric part of the third-rank tensor, f
dqs
jmn = f

dqs
mjn , has the

following non-zero components for the threefold symmetry:

xxx =ÿyyx =ÿxyy; yyy =ÿxyx =ÿxxy; zxy =ÿyzx; yzy = zxx;

xxz = yyz; zzz (six independent constants). It is easy to see

that only two types of components, xxx = ÿyyx = ÿxyy and

zxy = ÿyzx, change their sign under the glide-plane operation

x) ÿx and can contribute to the forbidden re¯ections. Let us

denote f dqs
xxx = f

dqs
1 and f dqs

zxy = f
dqs
2 for atom (ii). For the structure

factor of forbidden re¯ections we obtain

F̂dqs�hhl� � 4i sin�2��2h� l�x�
f

dqs
1 Hx ÿf

dqs
1 Hy f

dqs
2 Hy

ÿf
dqs
1 Hy ÿf

dqs
1 Hx ÿf

dqs
2 Hx

f
dqs
2 Hy ÿf

dqs
2 Hx 0

0B@
1CA:
�6�

According to the usual convention for hhh re¯ections that the

vector H � k0 ÿ k is directed along the z axis, we ®nd that

F̂�hhh� vanishes. This means that there is no symmetrical

dipole±quadrupole contribution to the hhh, h � 2n� 1,

forbidden re¯ections. The third-rank symmetric tensor can

contribute only in the hhl, l � 2n� 1, h 6� l, re¯ections but a

similar contribution can also appear owing to thermal-motion-

induced anisotropy in the dipole±dipole approximation.

The antisymmetric part of the third-rank tensor, f
dqa
jmn =

ÿf
dqa
mjn , contains three independent non-zero components: xyz;

yzx = zxy; yzy = ÿzxx. Only two of them, xyz and yzx = zxy,

change their sign under the glide-plane symmetry operation

and can contribute to the forbidden re¯ections. If we denote

f dqa
xyz = f

dqa
1 and f dqa

zxy = f
dqa
2 for atom (ii), then the structure factor

of forbidden re¯ections is given by the following equation:

F̂dqa�hhl� � 4i sin�2��2h� l�x�
0 f

dqa
1 k�z ÿf

dqa
2 k�y

ÿf
dqa
1 k�z 0 f

dqa
2 k�x

f
dqa
2 k�y ÿf

dqa
2 k�x 0

0@ 1A;
�7�

where k� � k0 � k. Both types of forbidden re¯ections, hhh,

h � 2n� 1, and hhl, l � 2n� 1, h 6� l, can be excited owing to

the antisymmetric third-rank tensor.

The quadrupole±quadrupole contribution is described by

the symmetric fourth-rank tensor (magnetism is neglected).

For the atoms related by inversion, this tensor is the same

(seven independent components). Only one of these compo-

nents is odd relative to x: xxxz =ÿyyxz =ÿxyyz (i.e. it changes

its sign under the glide-plane operation). This component can

contribute to forbidden re¯ections and, denoting f qq
xxxz = f

qq
1 for

atom (ii), we obtain the following structure factor of forbidden

re¯ections:

F̂qq�hhl� � 4 cos�2��2h� l�x� f qq
1

�
kxk0z � kzk0x ÿkyk0z ÿ kzk0y kxk0x ÿ kyk0y
ÿkyk0z ÿ kzk0y ÿkxk0z ÿ kzk0x ÿkxk0y ÿ kyk0x

kxk0x ÿ kyk0y ÿkxk0y ÿ kyk0x 0

0B@
1CA:
�8�

It is easy to see that F̂qq�hhl� 6� 0 for both types of forbidden

re¯ections, hhh, h � 2n� 1, and hhl, l � 2n� 1, h 6� l.

Let us consider more carefully the hhh, h � 2n� 1,

re¯ections. In this case, the tensor structure amplitudes are

strongly simpli®ed,

F̂dqa�hhh� � 8ikf
dqa
2 sin�6�hx� cos �

0 0 ÿ sin '
0 0 cos '

sin ' ÿ cos ' 0

0@ 1A;
�9�

F̂qq�hhh� � 4 cos�6�hx�f qq
1 k2 cos2 �

�
0 0 cos 2'

0 0 ÿ sin 2'

cos 2' ÿ sin 2' 0

0B@
1CA: �10�

The polarization properties of the re¯ections are simple: the

�-polarized incident beam transforms into the �-polarized

diffracted beam and vice versa. The structure amplitudes for

these two channels are given by the following expressions

calculated from (9) and (10):

p0F̂�hhh�r � 8ikf
dqa
2 sin�6�hx� cos2 �

� 4 cos�6�hx�f qq
1 k2 cos3 � sin 3';

rF̂�hhh�p � ÿ8ikf
dqa
2 sin�6�hx� cos2 �

� 4 cos�6�hx�f qq
1 k2 cos3 � sin 3':

�11�

An unusual feature is that the intensities of the r) p and

p) r channels may be different owing to interference

between dipole±quadrupole and quadrupole±quadrupole
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contributions. If f
dqa
2 = 0 (i.e. only the quadrupole±quadrupole

term differs from zero), then the azimuthal dependence is

sixfold for both channels. For f
qq
1 = 0, the azimuthal depen-

dence given by the antisymmetric third-rank tensor is trivial.

In the presence of both terms the interference in¯uences the

azimuthal dependence of the re¯ections. For both channels,

the azimuthal dependence has a threefold symmetry, but a

phase shift of 60� appears between I���'� and I���'�.
Note that just the threefold azimuthal dependence was

recently observed in hematite by Watanabe et al. (2000).

However, there may be another explanation of the threefold

azimuthal symmetry supposing the orbital ordering in hema-

tite (Lovesey & Knight, 2000). The difference is that in the

case of the orbital ordering the intensities of the r) p and

p) r channels are equal. The dependences of the intensities

on � and hx are also very different for these two physical

mechanisms and perhaps it would be not too dif®cult to

distinguish them experimentally.

In other R�3c crystals, like FeCO3 and FeBO3, the third-rank

contribution vanishes for Fe atoms because they are at the

inversion centres [x = 0 in (11)] and the azimuthal dependence

should be sixfold. For C or B atoms (x = 1
4), the fourth-rank

contribution vanishes and the third-rank contribution reaches

its maximum, but the energies of their absorption edges are

too small for diffraction. The same situation occurs in the high-

temperature R�3c structure of the LiNbO3 crystal. The low-

temperature ferroelectric phase has R3c symmetry and two Nb

atoms are at x; x; x and x� 1
2, x� 1

2, x� 1
2 positions with point

symmetry 3, exactly like atoms (ii) and (iv) in the hematite

structure. Therefore, near the Nb absorption edges the tensor

structure factor of the hhh, h = 2n� 1, forbidden re¯ections is

similar to (11),

p0F̂�hhh�r � 2 exp�6�ihx��if dqa
2 k cos2 � � f

qq
1 k2 cos3 � sin 3'�;

�12�
rF̂�hhh�p � 2 exp�6�ihx��ÿif

dqa
2 k cos2 � � f

qq
1 k2 cos3 � sin 3'�:

The value of f
dqa
2 differs from zero because x 6� 0, i.e. because

of the ferroelectric polarization. Hence, when the temperature

T is near the temperature Tc of the phase transition into the

paraelectric phase, one can expect that f
dqa
2 / x / �Tc ÿ T�1=2.

4.2. Tetragonal crystals

Let us consider the P4=nnc structure with the resonant

atoms in the 2(a) position: (i) 0; 0; 0 and (ii) 1
2 ;

1
2 ;

1
2. Far from

the absorption edge, the re¯ections 0kl; k0l; k� l = 2n� 1,

are forbidden according to the general re¯ection conditions.

In the dipole±dipole approximation, the local 422 symmetry

allows only the diagonal form of the scattering amplitude

tensor, which is the same for both atomic positions. Hence, no

ATS re¯ections appear near absorption edges owing to the

dipole±dipole transition.

Now let us calculate the dipole±quadrupole contribution to

the scattering amplitude, which is equal to

F
dq
ijk �0kl; k� l � 2n� 1� � f

dq;1
ijk ÿ f

dq;2
ijk : �13�

The point symmetry of the resonant-atom sites allows two

types of non-zero components for the antisymmetric part of a

third-rank tensor and one type for the symmetric part. For

atom (i), the antisymmetric part of a third-rank tensor

contains the following non-zero components: f dqa
yzx = f dqa

zxy = f
dqa
1 ,

f dqa
xyz = f

dqa
2 . The non-zero components of the symmetric third-

rank tensor on atom (i) are equal to f dqs
yzx = f dqs

zyx = ÿf dqs
xzy =

ÿf dqs
zxy = f

dqs
1 . The atoms (i) and (ii) are connected by the

inversion (hence f 1
ijk = ÿf 2

ijk) and also by the glide plane

�mÿxÿy j 00 1
2 �, which causes the following coordinate trans-

formation: y!ÿx, x!ÿy, z! z� 1
2. The calculation of

the third-rank tensor components taking into account the

structure factors shows that the symmetric part of

F
dqs
ijk �0kl; k� l � 2n� 1� possesses the following non-zero

components: Fdqs
yzx �0kl� � ÿFdqs

xzy �0kl� � f dqs;1
yzx ÿ f dqs;2

yzx � f dqs
yzx ÿ

f dqs
xzy � 2f

dqs
1 . The antisymmetric part F

dqa
ijk �0kl; k� l � 2n� 1�

has the components Fdqa
yzx �0kl� � ÿFdqa

xzy �0kl� � f dqa
yzx ÿ f dqa

xzy �
2f

dqa
1 , Fa

xyz�0kl� � f a
xyz ÿ f a

yzx � 2f a
2 .

An interesting case occurs for the re¯ection 00l, l � 2n� 1.

The convolution of F
dq
ijk �00l, l � 2n� 1) with the components

of the vectors H and k� gives the scattering amplitude for the

00l, l = 2n� 1, re¯ection,

F
dq
ij �00l; l � 2n� 1� � 2if

dqa
1

0 0 ÿk�y
0 0 k�x

k�y ÿk�x 0

0@ 1A: �14�

We see that only the antisymmetric part of a third-rank

tensor contributes to the scattering amplitude, i.e.

F
dqs
ij �00l, l � 2n� 1� � 0, but F

dqa
ij �00l, l � 2n� 1� 6� 0.

It is easy to see that there is no contribution to this re¯ec-

tion from the quadrupole±quadrupole transition. Indeed, the

considered atomic sites are related by inversion; therefore, any

fourth-rank tensors are the same for both sites. Neglecting the

higher-order terms, we ®nd that only the antisymmetric part of

a third-rank tensor can be the reason for the 00l, l = 2n� 1,

re¯ections near the absorption edge of a resonant atom in the

2(a) position of the space group P4=nnc.

In several other tetragonal groups, we ®nd the situation

when the high tetragonal symmetry of resonant atomic posi-

tions forbid ATS re¯ections in the dipole±dipole and quad-

rupole±quadrupole transitions, but allows both the symmetric

and antisymetric parts of a third-rank tensor.

4.3. Resonant atoms in a general position

The symmetry properties of a structure amplitude depend

on two factors: (i) the transformation properties of a space

group itself, and (ii) the local symmetry of the resonant atoms

position. In the present section, we will consider the ®rst

factor. We will concentrate on forbidden re¯ections with the

diffraction vectors directed along threefold, fourfold and

sixfold axes because all other re¯ections can be excited even in

the dipole±dipole approximation. If a space group contains a

threefold, fourfold or sixfold axis together with the glide-plane

c, then the structure amplitude for 00l, l = 2n� 1, re¯ections

satisfy the relation



F̂�00l� � exp�il'�ĝF̂�00l�; �15�
where ' � � for the glide plane �ĝ j c=2� and ' � 2� for point-

symmetry elements �ĝ j 0�. It essentially restricts the number

of non-zero tensor elements: only those tensor components

differ from zero that are allowed by point groups 3, 4 and 6

[they may be found in the textbooks by Sirotin & Shaskol-

skaya (1975); Nye (1985)] and change their sign under the

mirror re¯ection.

Let us consider tetragonal space groups P4nc, P4cc,

P4=mcc, P4=mnc and P4=nnc. In all of these, the second-rank

tensors contain only the components Fdd
xx � Fdd

yy and Fdd
zz . They

are invariant under the mirror re¯ections, hence 00l, l =

2n� 1, ATS re¯ections are absent in the dipole±dipole reso-

nant transition.

The following third-rank tensor components differ from

zero and change their sign under the mirror transformation

y!ÿy: Fdqs
yzx = ÿFdqs

zxy , Fdqa
yzx = Fdqa

zxy = F
dqa
1 , Fdqa

xyz = F
dqa
2 . Fourth-

rank tensors contain the components Fxxxy = ÿFyyyx = Fqq. For

the considered re¯ections 00l, l = 2n� 1, the symmetric part of

a third-rank tensor provides no contribution to the scattering

amplitude, similar to the considered case above of special

resonant atoms positions. Hence the forbidden re¯ections

contain the antisymmetric third-rank and fourth-rank contri-

butions even if resonant atoms belong to a general position.

The tensor structure amplitude is equal to

F̂�00l� � ikF
dqa
2 cos �

0 0 ÿ sin '

0 0 cos '

sin ' ÿ cos' 0

0B@
1CA

� Fqqk2 cos2 � sin 2'

1 0 0

0 ÿ1 0

0 0 0

0B@
1CA: �16�

The azimuthal dependence of the pure quadrupole term is

fourfold. The intensity turns to be zero at ' = ��=2�n (n =

1; 2; . . .). For the pure dipole±quadrupole contribution, the

azimuthal dependence is trivial and the intensity differs from

zero for any angles.

Additional restrictions on the tensor components occur

when resonant atoms are in special positions with 2x, 2y, 222 or

422 local symmetry. In this case, the quadrupole±quadrupole

tensor vanishes. Therefore, the forbidden re¯ection 00l, l =

2n� 1, are induced only by the antisymmetric part of a third-

rank tensor.

The tetragonal groups listed above describe the symmetry

of several minerals, among them iragite, turkestanite

(P4=mcc); apophylite, chiolite, hydroromachite (P4=mnc); and

cuprorivaite, effenbergite and urancircite (P4=nnc). In all

these substances, 00l, l = 2n� 1, re¯ections appear near the

absorption edges owing to the local chirality.

Now we pay attention to the hexagonal space groups which

contain a 6 axis and a glide plane c. In these groups, similar to

the tetragonal case, ATS re¯ections 00l, l = 2n� 1, remain

forbidden for dipole±dipole resonant transitions. To ®nd non-

zero components of a tensor structure amplitude, we again

look for the terms which are invariant under the sixfold

rotation and change sign under mirror re¯ection owing to the

c glide plane. The components which satisfy these demands

are Fdqs
yzx = Fdqs

zxy , Fdqa
yzx = Fqda

zxy . A fourth-rank tensor does not

contain the proper components. The symmetric part of a third-

rank tensor gives no contribution to 00l, l = 2n� 1, re¯ections.

Hence we ®nd that, in the space groups P6cc, P6=mcc, P�6c2

and P�62c, only the antisymmetric part of the third-rank tensor

makes a contribution to the forbidden chirality-induced

re¯ections. It is correct even for crystals with resonant atoms

in general positions.

Special consideration has to be made for space groups with

screw axis 63 because 00l, l = 2n� 1, ATS re¯ections are

forbidden in the dipole±dipole approximation (Dmitrienko,

1983; Belyakov & Dmitrienko, 1989). The same is true for the

00l, l = 6n� 3, re¯ections in the presence of the 61 and 65 axes.

Because there are no point-symmetry elements, it is more

suitable to calculate tensor components as a sum under the

atoms inside the position. The coordinates of the atoms on the

orbit of the 63 group are equal to: (i) xÿ y=2; 31=2y=2; z;

(ii) ÿ�x� y�=2; 31=2�xÿ y�=2; z; (iii) yÿ x=2;ÿ31=2x=2; z;

(iv) y=2ÿ x;ÿ31=2y=2; z� 1
2; (v) �x� y�=2; 31=2�yÿ x�=2; z� 1

2;

(vi) x=2ÿ y; 31=2x=2; z� 1
2. We can calculate F

dq
ijk �00l, l =

2n� 1) =
P

i f
dqi
ijk and ®nd that the antisymmetric part of the

third-rank tensor is equal to zero. The symmetric part has

non-zero components Fdqs
xyx, Fdqs

xxx etc., but it vanishes after

convolution with the components of the corresponding reci-

procal vector. Hence, there is no chirality-induced re¯ections

of type 00l, l = 2n� 1, in the space groups with a 63 axis.

It is also easy to prove that the 00l, l = 2n� 1, forbidden

re¯ections in the Pn�3n crystals can be induced exclusively by

the antisymmetric part of a third-rank tensor (without any

contribution from the quadrupole±quadrupole mechanism)

even if the resonant atoms are in general positions. The only

position which cannot contribute to the 00l, l = 2n� 1,

re¯ections is 8�c� because its point symmetry is �3.

5. Conclusions

We have found symmetry restrictions on the components of

the antisymmetric part of the X-ray susceptibility in different

space groups. They show that some additional re¯ections can

appear near absorption edges, which are induced by local

chirality of the atomic structure. We have identi®ed those

cases where only dipole±quadrupole resonant transitions

provide a signi®cant contribution. A prerequisite for this is the

absence of ATS re¯ections in dipole±dipole transitions. It is

shown that the chirality-induced re¯ections occur in cubic,

rhombohedral, tetragonal and hexagonal crystals for the

diffraction vectors directed along threefold, fourfold or sixfold

axes. All other re¯ections can be excited even in the dipole±

dipole approximation either because of general atomic posi-

tions or because of thermal atomic motion. In the presence

of different contributions, interference between chirality-

induced and other terms can provide additional information

about the local chirality.

The chirality-induced effects in resonant X-ray diffraction

correspond to the non-reversal time-invariant electronic
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transitions in atoms, which are also responsible for chiral

effects in X-ray optics of non-magnetic crystals. Nevertheless,

the resonant diffraction exhibits some properties of crystal

chirality, never observed in the transmitted direction. The

most interesting result concerns the existence of the chirality-

induced re¯ections in centrosymmetric crystals which are not

gyrotropic in optics. This demonstrates the difference between

microscopic and macroscopic chirality of crystals.

If we refer to experimental results, the amplitude of the

dipole±quadrupole contribution to dichroism is rather weak

but can be of the order of a few 10ÿ2 in favourable cases

(Goulon et al., 1998). The intensity of the chirality-induced

re¯ections depends on both the imaginary and real parts of the

scattering amplitude, which are related by the Kramers±

Kronig dispersion relation generalized for the scattering

process (Goldberger & Watson, 1964; Cross et al., 1998). One

may anticipate that the detection of the chirality-induced

re¯ections will be rather dif®cult because of their small

intensity. Nevertheless, the magnetic re¯ections owing to non-

resonant scattering (Gibbs et al., 1985) with a scattering

amplitude of about 10ÿ3 were successfully observed with

synchrotron radiation as far as the quadrupole±quadrupole

forbidden re¯ections (Finkelstein et al., 1992; Watanabe et al.,

2000). This must encourage the experimental attempts to

study the chirality-induced re¯ections.
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are acknowledged. VED is grateful to the Science University
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